src.dualinventive.com/go/devsim/vendor/github.com/dop251/goja/dtoa.go

291 lines
5.6 KiB
Go

package goja
// Ported from Rhino (https://github.com/mozilla/rhino/blob/master/src/org/mozilla/javascript/DToA.java)
import (
"bytes"
"fmt"
"math"
"math/big"
"strconv"
)
const (
frac_mask = 0xfffff
exp_shift = 20
exp_msk1 = 0x100000
exp_shiftL = 52
exp_mask_shifted = 0x7ff
frac_maskL = 0xfffffffffffff
exp_msk1L = 0x10000000000000
exp_shift1 = 20
exp_mask = 0x7ff00000
bias = 1023
p = 53
bndry_mask = 0xfffff
log2P = 1
digits = "0123456789abcdefghijklmnopqrstuvwxyz"
)
func lo0bits(x uint32) (k uint32) {
if (x & 7) != 0 {
if (x & 1) != 0 {
return 0
}
if (x & 2) != 0 {
return 1
}
return 2
}
if (x & 0xffff) == 0 {
k = 16
x >>= 16
}
if (x & 0xff) == 0 {
k += 8
x >>= 8
}
if (x & 0xf) == 0 {
k += 4
x >>= 4
}
if (x & 0x3) == 0 {
k += 2
x >>= 2
}
if (x & 1) == 0 {
k++
x >>= 1
if (x & 1) == 0 {
return 32
}
}
return
}
func hi0bits(x uint32) (k uint32) {
if (x & 0xffff0000) == 0 {
k = 16
x <<= 16
}
if (x & 0xff000000) == 0 {
k += 8
x <<= 8
}
if (x & 0xf0000000) == 0 {
k += 4
x <<= 4
}
if (x & 0xc0000000) == 0 {
k += 2
x <<= 2
}
if (x & 0x80000000) == 0 {
k++
if (x & 0x40000000) == 0 {
return 32
}
}
return
}
func stuffBits(bits []byte, offset int, val uint32) {
bits[offset] = byte(val >> 24)
bits[offset+1] = byte(val >> 16)
bits[offset+2] = byte(val >> 8)
bits[offset+3] = byte(val)
}
func d2b(d float64) (b *big.Int, e int32, bits uint32) {
dBits := math.Float64bits(d)
d0 := uint32(dBits >> 32)
d1 := uint32(dBits)
z := d0 & frac_mask
d0 &= 0x7fffffff /* clear sign bit, which we ignore */
var de, k, i uint32
var dbl_bits []byte
if de = (d0 >> exp_shift); de != 0 {
z |= exp_msk1
}
y := d1
if y != 0 {
dbl_bits = make([]byte, 8)
k = lo0bits(y)
y >>= k
if k != 0 {
stuffBits(dbl_bits, 4, y|z<<(32-k))
z >>= k
} else {
stuffBits(dbl_bits, 4, y)
}
stuffBits(dbl_bits, 0, z)
if z != 0 {
i = 2
} else {
i = 1
}
} else {
dbl_bits = make([]byte, 4)
k = lo0bits(z)
z >>= k
stuffBits(dbl_bits, 0, z)
k += 32
i = 1
}
if de != 0 {
e = int32(de - bias - (p - 1) + k)
bits = p - k
} else {
e = int32(de - bias - (p - 1) + 1 + k)
bits = 32*i - hi0bits(z)
}
b = (&big.Int{}).SetBytes(dbl_bits)
return
}
func dtobasestr(num float64, radix int) string {
var negative bool
if num < 0 {
num = -num
negative = true
}
dfloor := math.Floor(num)
ldfloor := int64(dfloor)
var intDigits string
if dfloor == float64(ldfloor) {
if negative {
ldfloor = -ldfloor
}
intDigits = strconv.FormatInt(ldfloor, radix)
} else {
floorBits := math.Float64bits(num)
exp := int(floorBits>>exp_shiftL) & exp_mask_shifted
var mantissa int64
if exp == 0 {
mantissa = int64((floorBits & frac_maskL) << 1)
} else {
mantissa = int64((floorBits & frac_maskL) | exp_msk1L)
}
if negative {
mantissa = -mantissa
}
exp -= 1075
x := big.NewInt(mantissa)
if exp > 0 {
x.Lsh(x, uint(exp))
} else if exp < 0 {
x.Rsh(x, uint(-exp))
}
intDigits = x.Text(radix)
}
if num == dfloor {
// No fraction part
return intDigits
} else {
/* We have a fraction. */
var buffer bytes.Buffer
buffer.WriteString(intDigits)
buffer.WriteByte('.')
df := num - dfloor
dBits := math.Float64bits(num)
word0 := uint32(dBits >> 32)
word1 := uint32(dBits)
b, e, _ := d2b(df)
// JS_ASSERT(e < 0);
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
s2 := -int32((word0 >> exp_shift1) & (exp_mask >> exp_shift1))
if s2 == 0 {
s2 = -1
}
s2 += bias + p
/* 1/2^s2 = (nextDouble(d) - d)/2 */
// JS_ASSERT(-s2 < e);
if -s2 >= e {
panic(fmt.Errorf("-s2 >= e: %d, %d", -s2, e))
}
mlo := big.NewInt(1)
mhi := mlo
if (word1 == 0) && ((word0 & bndry_mask) == 0) && ((word0 & (exp_mask & (exp_mask << 1))) != 0) {
/* The special case. Here we want to be within a quarter of the last input
significant digit instead of one half of it when the output string's value is less than d. */
s2 += log2P
mhi = big.NewInt(1 << log2P)
}
b.Lsh(b, uint(e+s2))
s := big.NewInt(1)
s.Lsh(s, uint(s2))
/* At this point we have the following:
* s = 2^s2;
* 1 > df = b/2^s2 > 0;
* (d - prevDouble(d))/2 = mlo/2^s2;
* (nextDouble(d) - d)/2 = mhi/2^s2. */
bigBase := big.NewInt(int64(radix))
done := false
m := &big.Int{}
delta := &big.Int{}
for !done {
b.Mul(b, bigBase)
b.DivMod(b, s, m)
digit := byte(b.Int64())
b, m = m, b
mlo.Mul(mlo, bigBase)
if mlo != mhi {
mhi.Mul(mhi, bigBase)
}
/* Do we yet have the shortest string that will round to d? */
j := b.Cmp(mlo)
/* j is b/2^s2 compared with mlo/2^s2. */
delta.Sub(s, mhi)
var j1 int
if delta.Sign() <= 0 {
j1 = 1
} else {
j1 = b.Cmp(delta)
}
/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
if j1 == 0 && (word1&1) == 0 {
if j > 0 {
digit++
}
done = true
} else if j < 0 || (j == 0 && ((word1 & 1) == 0)) {
if j1 > 0 {
/* Either dig or dig+1 would work here as the least significant digit.
Use whichever would produce an output value closer to d. */
b.Lsh(b, 1)
j1 = b.Cmp(s)
if j1 > 0 { /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output such as 3.5 in base 3. */
digit++
}
}
done = true
} else if j1 > 0 {
digit++
done = true
}
// JS_ASSERT(digit < (uint32)base);
buffer.WriteByte(digits[digit])
}
return buffer.String()
}
}