src.dualinventive.com/go/devsim/vendor/github.com/dop251/goja/compiler_stmt.go

794 lines
18 KiB
Go

package goja
import (
"fmt"
"github.com/dop251/goja/ast"
"github.com/dop251/goja/file"
"github.com/dop251/goja/token"
"strconv"
)
func (c *compiler) compileStatement(v ast.Statement, needResult bool) {
// log.Printf("compileStatement(): %T", v)
switch v := v.(type) {
case *ast.BlockStatement:
c.compileBlockStatement(v, needResult)
case *ast.ExpressionStatement:
c.compileExpressionStatement(v, needResult)
case *ast.VariableStatement:
c.compileVariableStatement(v, needResult)
case *ast.ReturnStatement:
c.compileReturnStatement(v)
case *ast.IfStatement:
c.compileIfStatement(v, needResult)
case *ast.DoWhileStatement:
c.compileDoWhileStatement(v, needResult)
case *ast.ForStatement:
c.compileForStatement(v, needResult)
case *ast.ForInStatement:
c.compileForInStatement(v, needResult)
case *ast.WhileStatement:
c.compileWhileStatement(v, needResult)
case *ast.BranchStatement:
c.compileBranchStatement(v, needResult)
case *ast.TryStatement:
c.compileTryStatement(v)
if needResult {
c.emit(loadUndef)
}
case *ast.ThrowStatement:
c.compileThrowStatement(v)
case *ast.SwitchStatement:
c.compileSwitchStatement(v, needResult)
case *ast.LabelledStatement:
c.compileLabeledStatement(v, needResult)
case *ast.EmptyStatement:
c.compileEmptyStatement(needResult)
case *ast.WithStatement:
c.compileWithStatement(v, needResult)
case *ast.DebuggerStatement:
default:
panic(fmt.Errorf("Unknown statement type: %T", v))
}
}
func (c *compiler) compileLabeledStatement(v *ast.LabelledStatement, needResult bool) {
label := v.Label.Name
for b := c.block; b != nil; b = b.outer {
if b.label == label {
c.throwSyntaxError(int(v.Label.Idx-1), "Label '%s' has already been declared", label)
}
}
switch s := v.Statement.(type) {
case *ast.ForInStatement:
c.compileLabeledForInStatement(s, needResult, label)
case *ast.ForStatement:
c.compileLabeledForStatement(s, needResult, label)
case *ast.WhileStatement:
c.compileLabeledWhileStatement(s, needResult, label)
case *ast.DoWhileStatement:
c.compileLabeledDoWhileStatement(s, needResult, label)
default:
c.compileGenericLabeledStatement(v.Statement, needResult, label)
}
}
func (c *compiler) compileTryStatement(v *ast.TryStatement) {
if c.scope.strict && v.Catch != nil {
switch v.Catch.Parameter.Name {
case "arguments", "eval":
c.throwSyntaxError(int(v.Catch.Parameter.Idx)-1, "Catch variable may not be eval or arguments in strict mode")
}
}
c.block = &block{
typ: blockTry,
outer: c.block,
}
lbl := len(c.p.code)
c.emit(nil)
c.compileStatement(v.Body, false)
c.emit(halt)
lbl2 := len(c.p.code)
c.emit(nil)
var catchOffset int
dynamicCatch := true
if v.Catch != nil {
dyn := nearestNonLexical(c.scope).dynamic
accessed := c.scope.accessed
c.newScope()
c.scope.bindName(v.Catch.Parameter.Name)
c.scope.lexical = true
start := len(c.p.code)
c.emit(nil)
catchOffset = len(c.p.code) - lbl
c.emit(enterCatch(v.Catch.Parameter.Name))
c.compileStatement(v.Catch.Body, false)
dyn1 := c.scope.dynamic
accessed1 := c.scope.accessed
c.popScope()
if !dyn && !dyn1 && !accessed1 {
c.scope.accessed = accessed
dynamicCatch = false
code := c.p.code[start+1:]
m := make(map[uint32]uint32)
remap := func(instr uint32) uint32 {
level := instr >> 24
idx := instr & 0x00FFFFFF
if level > 0 {
level--
return (level << 24) | idx
} else {
// remap
newIdx, exists := m[idx]
if !exists {
exname := " __tmp" + strconv.Itoa(c.scope.lastFreeTmp)
c.scope.lastFreeTmp++
newIdx, _ = c.scope.bindName(exname)
m[idx] = newIdx
}
return newIdx
}
}
for pc, instr := range code {
switch instr := instr.(type) {
case getLocal:
code[pc] = getLocal(remap(uint32(instr)))
case setLocal:
code[pc] = setLocal(remap(uint32(instr)))
case setLocalP:
code[pc] = setLocalP(remap(uint32(instr)))
}
}
if catchVarIdx, exists := m[0]; exists {
c.p.code[start] = setLocal(catchVarIdx)
c.p.code[start+1] = pop
catchOffset--
} else {
c.p.code[start+1] = nil
catchOffset++
}
} else {
c.scope.accessed = true
}
/*
if true/*sc.dynamic/ {
dynamicCatch = true
c.scope.accessed = true
c.newScope()
c.scope.bindName(v.Catch.Parameter.Name)
c.scope.lexical = true
c.emit(enterCatch(v.Catch.Parameter.Name))
c.compileStatement(v.Catch.Body, false)
c.popScope()
} else {
exname := " __tmp" + strconv.Itoa(c.scope.lastFreeTmp)
c.scope.lastFreeTmp++
catchVarIdx, _ := c.scope.bindName(exname)
c.emit(setLocal(catchVarIdx), pop)
saved, wasSaved := c.scope.namesMap[v.Catch.Parameter.Name]
c.scope.namesMap[v.Catch.Parameter.Name] = exname
c.compileStatement(v.Catch.Body, false)
if wasSaved {
c.scope.namesMap[v.Catch.Parameter.Name] = saved
} else {
delete(c.scope.namesMap, v.Catch.Parameter.Name)
}
c.scope.lastFreeTmp--
}*/
c.emit(halt)
}
var finallyOffset int
if v.Finally != nil {
lbl1 := len(c.p.code)
c.emit(nil)
finallyOffset = len(c.p.code) - lbl
c.compileStatement(v.Finally, false)
c.emit(halt, retFinally)
c.p.code[lbl1] = jump(len(c.p.code) - lbl1)
}
c.p.code[lbl] = try{catchOffset: int32(catchOffset), finallyOffset: int32(finallyOffset), dynamic: dynamicCatch}
c.p.code[lbl2] = jump(len(c.p.code) - lbl2)
c.leaveBlock()
}
func (c *compiler) compileThrowStatement(v *ast.ThrowStatement) {
//c.p.srcMap = append(c.p.srcMap, srcMapItem{pc: len(c.p.code), srcPos: int(v.Throw) - 1})
c.compileExpression(v.Argument).emitGetter(true)
c.emit(throw)
}
func (c *compiler) compileDoWhileStatement(v *ast.DoWhileStatement, needResult bool) {
c.compileLabeledDoWhileStatement(v, needResult, "")
}
func (c *compiler) compileLabeledDoWhileStatement(v *ast.DoWhileStatement, needResult bool, label string) {
c.block = &block{
typ: blockLoop,
outer: c.block,
label: label,
needResult: needResult,
}
if needResult {
c.emit(jump(2))
}
start := len(c.p.code)
if needResult {
c.emit(pop)
}
c.markBlockStart()
c.compileStatement(v.Body, needResult)
c.block.cont = len(c.p.code)
c.emitExpr(c.compileExpression(v.Test), true)
c.emit(jeq(start - len(c.p.code)))
c.leaveBlock()
}
func (c *compiler) compileForStatement(v *ast.ForStatement, needResult bool) {
c.compileLabeledForStatement(v, needResult, "")
}
func (c *compiler) compileLabeledForStatement(v *ast.ForStatement, needResult bool, label string) {
c.block = &block{
typ: blockLoop,
outer: c.block,
label: label,
needResult: needResult,
}
if v.Initializer != nil {
c.compileExpression(v.Initializer).emitGetter(false)
}
if needResult {
c.emit(loadUndef) // initial result
}
start := len(c.p.code)
c.markBlockStart()
var j int
testConst := false
if v.Test != nil {
expr := c.compileExpression(v.Test)
if expr.constant() {
r, ex := c.evalConst(expr)
if ex == nil {
if r.ToBoolean() {
testConst = true
} else {
// TODO: Properly implement dummy compilation (no garbage in block, scope, etc..)
/*
p := c.p
c.p = &program{}
c.compileStatement(v.Body, false)
if v.Update != nil {
c.compileExpression(v.Update).emitGetter(false)
}
c.p = p*/
goto end
}
} else {
expr.addSrcMap()
c.emitThrow(ex.val)
goto end
}
} else {
expr.emitGetter(true)
j = len(c.p.code)
c.emit(nil)
}
}
if needResult {
c.emit(pop) // remove last result
}
c.markBlockStart()
c.compileStatement(v.Body, needResult)
c.block.cont = len(c.p.code)
if v.Update != nil {
c.compileExpression(v.Update).emitGetter(false)
}
c.emit(jump(start - len(c.p.code)))
if v.Test != nil {
if !testConst {
c.p.code[j] = jne(len(c.p.code) - j)
}
}
end:
c.leaveBlock()
c.markBlockStart()
}
func (c *compiler) compileForInStatement(v *ast.ForInStatement, needResult bool) {
c.compileLabeledForInStatement(v, needResult, "")
}
func (c *compiler) compileLabeledForInStatement(v *ast.ForInStatement, needResult bool, label string) {
c.block = &block{
typ: blockLoop,
outer: c.block,
label: label,
needResult: needResult,
}
c.compileExpression(v.Source).emitGetter(true)
c.emit(enumerate)
if needResult {
c.emit(loadUndef)
}
start := len(c.p.code)
c.markBlockStart()
c.block.cont = start
c.emit(nil)
c.compileExpression(v.Into).emitSetter(&c.enumGetExpr)
c.emit(pop)
if needResult {
c.emit(pop) // remove last result
}
c.markBlockStart()
c.compileStatement(v.Body, needResult)
c.emit(jump(start - len(c.p.code)))
c.p.code[start] = enumNext(len(c.p.code) - start)
c.leaveBlock()
c.markBlockStart()
c.emit(enumPop)
}
func (c *compiler) compileWhileStatement(v *ast.WhileStatement, needResult bool) {
c.compileLabeledWhileStatement(v, needResult, "")
}
func (c *compiler) compileLabeledWhileStatement(v *ast.WhileStatement, needResult bool, label string) {
c.block = &block{
typ: blockLoop,
outer: c.block,
label: label,
needResult: needResult,
}
if needResult {
c.emit(loadUndef)
}
start := len(c.p.code)
c.markBlockStart()
c.block.cont = start
expr := c.compileExpression(v.Test)
testTrue := false
var j int
if expr.constant() {
if t, ex := c.evalConst(expr); ex == nil {
if t.ToBoolean() {
testTrue = true
} else {
p := c.p
c.p = &Program{}
c.compileStatement(v.Body, false)
c.p = p
goto end
}
} else {
c.emitThrow(ex.val)
goto end
}
} else {
expr.emitGetter(true)
j = len(c.p.code)
c.emit(nil)
}
if needResult {
c.emit(pop)
}
c.markBlockStart()
c.compileStatement(v.Body, needResult)
c.emit(jump(start - len(c.p.code)))
if !testTrue {
c.p.code[j] = jne(len(c.p.code) - j)
}
end:
c.leaveBlock()
c.markBlockStart()
}
func (c *compiler) compileEmptyStatement(needResult bool) {
if needResult {
if len(c.p.code) == c.blockStart {
// first statement in block, use undefined as result
c.emit(loadUndef)
}
}
}
func (c *compiler) compileBranchStatement(v *ast.BranchStatement, needResult bool) {
switch v.Token {
case token.BREAK:
c.compileBreak(v.Label, v.Idx)
case token.CONTINUE:
c.compileContinue(v.Label, v.Idx)
default:
panic(fmt.Errorf("Unknown branch statement token: %s", v.Token.String()))
}
}
func (c *compiler) findBranchBlock(st *ast.BranchStatement) *block {
switch st.Token {
case token.BREAK:
return c.findBreakBlock(st.Label)
case token.CONTINUE:
return c.findContinueBlock(st.Label)
}
return nil
}
func (c *compiler) findContinueBlock(label *ast.Identifier) (block *block) {
if label != nil {
for b := c.block; b != nil; b = b.outer {
if b.typ == blockLoop && b.label == label.Name {
block = b
break
}
}
} else {
// find the nearest loop
for b := c.block; b != nil; b = b.outer {
if b.typ == blockLoop {
block = b
break
}
}
}
return
}
func (c *compiler) findBreakBlock(label *ast.Identifier) (block *block) {
if label != nil {
for b := c.block; b != nil; b = b.outer {
if b.label == label.Name {
block = b
break
}
}
} else {
// find the nearest loop or switch
L:
for b := c.block; b != nil; b = b.outer {
switch b.typ {
case blockLoop, blockSwitch:
block = b
break L
}
}
}
return
}
func (c *compiler) compileBreak(label *ast.Identifier, idx file.Idx) {
var block *block
if label != nil {
for b := c.block; b != nil; b = b.outer {
switch b.typ {
case blockTry:
c.emit(halt)
case blockWith:
c.emit(leaveWith)
}
if b.label == label.Name {
block = b
break
}
}
} else {
// find the nearest loop or switch
L:
for b := c.block; b != nil; b = b.outer {
switch b.typ {
case blockTry:
c.emit(halt)
case blockWith:
c.emit(leaveWith)
case blockLoop, blockSwitch:
block = b
break L
}
}
}
if block != nil {
if len(c.p.code) == c.blockStart && block.needResult {
c.emit(loadUndef)
}
block.breaks = append(block.breaks, len(c.p.code))
c.emit(nil)
} else {
c.throwSyntaxError(int(idx)-1, "Undefined label '%s'", label.Name)
}
}
func (c *compiler) compileContinue(label *ast.Identifier, idx file.Idx) {
var block *block
if label != nil {
for b := c.block; b != nil; b = b.outer {
if b.typ == blockTry {
c.emit(halt)
} else if b.typ == blockLoop && b.label == label.Name {
block = b
break
}
}
} else {
// find the nearest loop
for b := c.block; b != nil; b = b.outer {
if b.typ == blockTry {
c.emit(halt)
} else if b.typ == blockLoop {
block = b
break
}
}
}
if block != nil {
if len(c.p.code) == c.blockStart && block.needResult {
c.emit(loadUndef)
}
block.conts = append(block.conts, len(c.p.code))
c.emit(nil)
} else {
c.throwSyntaxError(int(idx)-1, "Undefined label '%s'", label.Name)
}
}
func (c *compiler) compileIfStatement(v *ast.IfStatement, needResult bool) {
test := c.compileExpression(v.Test)
if test.constant() {
r, ex := c.evalConst(test)
if ex != nil {
test.addSrcMap()
c.emitThrow(ex.val)
return
}
if r.ToBoolean() {
c.markBlockStart()
c.compileStatement(v.Consequent, needResult)
if v.Alternate != nil {
p := c.p
c.p = &Program{}
c.markBlockStart()
c.compileStatement(v.Alternate, false)
c.p = p
}
} else {
// TODO: Properly implement dummy compilation (no garbage in block, scope, etc..)
p := c.p
c.p = &Program{}
c.compileStatement(v.Consequent, false)
c.p = p
if v.Alternate != nil {
c.compileStatement(v.Alternate, needResult)
} else {
if needResult {
c.emit(loadUndef)
}
}
}
return
}
test.emitGetter(true)
jmp := len(c.p.code)
c.emit(nil)
c.markBlockStart()
c.compileStatement(v.Consequent, needResult)
if v.Alternate != nil {
jmp1 := len(c.p.code)
c.emit(nil)
c.p.code[jmp] = jne(len(c.p.code) - jmp)
c.markBlockStart()
c.compileStatement(v.Alternate, needResult)
c.p.code[jmp1] = jump(len(c.p.code) - jmp1)
c.markBlockStart()
} else {
c.p.code[jmp] = jne(len(c.p.code) - jmp)
c.markBlockStart()
if needResult {
c.emit(loadUndef)
}
}
}
func (c *compiler) compileReturnStatement(v *ast.ReturnStatement) {
if v.Argument != nil {
c.compileExpression(v.Argument).emitGetter(true)
//c.emit(checkResolve)
} else {
c.emit(loadUndef)
}
for b := c.block; b != nil; b = b.outer {
if b.typ == blockTry {
c.emit(halt)
}
}
c.emit(ret)
}
func (c *compiler) compileVariableStatement(v *ast.VariableStatement, needResult bool) {
for _, expr := range v.List {
c.compileExpression(expr).emitGetter(false)
}
if needResult {
c.emit(loadUndef)
}
}
func (c *compiler) getFirstNonEmptyStatement(st ast.Statement) ast.Statement {
switch st := st.(type) {
case *ast.BlockStatement:
return c.getFirstNonEmptyStatementList(st.List)
case *ast.LabelledStatement:
return c.getFirstNonEmptyStatement(st.Statement)
}
return st
}
func (c *compiler) getFirstNonEmptyStatementList(list []ast.Statement) ast.Statement {
for _, st := range list {
switch st := st.(type) {
case *ast.EmptyStatement:
continue
case *ast.BlockStatement:
return c.getFirstNonEmptyStatementList(st.List)
case *ast.LabelledStatement:
return c.getFirstNonEmptyStatement(st.Statement)
}
return st
}
return nil
}
func (c *compiler) compileStatements(list []ast.Statement, needResult bool) {
if len(list) > 0 {
cur := list[0]
for idx := 0; idx < len(list); {
var next ast.Statement
// find next non-empty statement
for idx++; idx < len(list); idx++ {
if _, empty := list[idx].(*ast.EmptyStatement); !empty {
next = list[idx]
break
}
}
if next != nil {
bs := c.getFirstNonEmptyStatement(next)
if bs, ok := bs.(*ast.BranchStatement); ok {
block := c.findBranchBlock(bs)
if block != nil {
c.compileStatement(cur, block.needResult)
cur = next
continue
}
}
c.compileStatement(cur, false)
cur = next
} else {
c.compileStatement(cur, needResult)
}
}
} else {
if needResult {
c.emit(loadUndef)
}
}
}
func (c *compiler) compileGenericLabeledStatement(v ast.Statement, needResult bool, label string) {
c.block = &block{
typ: blockBranch,
outer: c.block,
label: label,
needResult: needResult,
}
c.compileStatement(v, needResult)
c.leaveBlock()
}
func (c *compiler) compileBlockStatement(v *ast.BlockStatement, needResult bool) {
c.compileStatements(v.List, needResult)
}
func (c *compiler) compileExpressionStatement(v *ast.ExpressionStatement, needResult bool) {
expr := c.compileExpression(v.Expression)
if expr.constant() {
c.emitConst(expr, needResult)
} else {
expr.emitGetter(needResult)
}
}
func (c *compiler) compileWithStatement(v *ast.WithStatement, needResult bool) {
if c.scope.strict {
c.throwSyntaxError(int(v.With)-1, "Strict mode code may not include a with statement")
return
}
c.compileExpression(v.Object).emitGetter(true)
c.emit(enterWith)
c.block = &block{
outer: c.block,
typ: blockWith,
needResult: needResult,
}
c.newScope()
c.scope.dynamic = true
c.scope.lexical = true
c.compileStatement(v.Body, needResult)
c.emit(leaveWith)
c.leaveBlock()
c.popScope()
}
func (c *compiler) compileSwitchStatement(v *ast.SwitchStatement, needResult bool) {
c.block = &block{
typ: blockSwitch,
outer: c.block,
needResult: needResult,
}
c.compileExpression(v.Discriminant).emitGetter(true)
jumps := make([]int, len(v.Body))
for i, s := range v.Body {
if s.Test != nil {
c.emit(dup)
c.compileExpression(s.Test).emitGetter(true)
c.emit(op_strict_eq)
c.emit(jne(3), pop)
jumps[i] = len(c.p.code)
c.emit(nil)
}
}
c.emit(pop)
jumpNoMatch := -1
if v.Default != -1 {
if v.Default != 0 {
jumps[v.Default] = len(c.p.code)
c.emit(nil)
}
} else {
jumpNoMatch = len(c.p.code)
c.emit(nil)
}
for i, s := range v.Body {
if s.Test != nil || i != 0 {
c.p.code[jumps[i]] = jump(len(c.p.code) - jumps[i])
c.markBlockStart()
}
nr := false
c.markBlockStart()
if needResult {
if i < len(v.Body)-1 {
st := c.getFirstNonEmptyStatementList(v.Body[i+1].Consequent)
if st, ok := st.(*ast.BranchStatement); ok && st.Token == token.BREAK {
if c.findBreakBlock(st.Label) != nil {
stmts := append(s.Consequent, st)
c.compileStatements(stmts, false)
continue
}
}
} else {
nr = true
}
}
c.compileStatements(s.Consequent, nr)
}
if jumpNoMatch != -1 {
c.p.code[jumpNoMatch] = jump(len(c.p.code) - jumpNoMatch)
if len(v.Body) == 0 && needResult {
c.emit(loadUndef)
}
}
c.leaveBlock()
c.markBlockStart()
}